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A mathematical model of the evaporative cooling of binary drops in a flow reactor, accounting for the latent-
heat liberation as a result of the phase transformation of the binary-drop components in the process of their
condensation, the inverse processes of evaporation of these components, and the latent-heat liberation in the
process of dissolution of one of the binary-drop components, has been developed. The numerical calculations
were carried out for diluted ammonia spirits. It is shown that the evaporative cooling of binary drops in a
flow reactor can be controlled by varying the compositions of the gas mixture and the solution and the ratio
between their flow rates, and that the rate of cooling of drops can reach 2⋅105 K ⁄ sec.

Introduction. The evaporative cooling of small liquid drops with a radius of several microns at a low pres-
sure in the gas phase is of importance for a number of modern technologies. In particular, this process can be used in
ecologically clean air conditioning and ventilation systems. Moreover, the evaporative cooling of micron drops plays
an important role in the production of supersaturated solutions used for obtaining nanoparticles by the promising
method of pyrolysis of drops contained in solutions at a low pressure in a flow reactor [1]. In [2], experimental and
theoretical data on the evaporative cooling of micron pure-water drops are presented. The mathematical model of the
process being considered, developed in this work, can be used for the description, in the free-molecular approximation,
of the heat and mass transfer between micron drops in the gas phase at a low pressure (lower than 100 Torr).

The bases of the kinetic description of the evaporation and condensation of gas drops were considered in
[3]. Important additions to the kinetic description of the evaporation and condensation of vapor drops are presented
in [4, 5]. Some problems on the evaporation of binary drops were considered in the diffusion approximation in [6].

The aim of the present work is to develop a mathematical model of the evaporative cooling of micron binary
drops in a gas flow. This process was numerically simulated by the practically important example of micron drops of
diluted ammonia spirits. The evaporative cooling of multicomponent drops of solutions opens up new possibilities for
control of the formation of nanoparticles in the process of pyrolysis of drops at a low pressure (see [7]) with the use
of multicomponent aqueous solutions containing ammonia.

Mathematical Model. We will consider the problem on the evaporative cooling of an ensemble of drops of
an ammonia spirit in a flow aerosol reactor operating at a low pressure (Fig. 1). For simplicity, it will be assumed
that, at the input of the reactor, the drops and the gas flow have equal temperatures and the molar fractions of ammo-
nia in the liquid and gas phases are different. Nitrogen is used as the gas carrier.

It is also assumed that, at fairly low mass rates of the solution flow, the drops, on the average, are widely
spaced — the distance between them is much larger than the diameter of a drop. Therefore, the process of heat and
mass transfer occurring in the process of evaporation of an individual drop can be investigated without considering the
action of the neighboring drops. We will consider a drop including Nw water molecules and Na ammonia molecules at
a temperature Td. The radius of this drop Rd is defined as

4πRd
3

3
 ρ (x) = maNa + mwNw , (1)
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where ma and mw are the ammonia and water molecular masses and ρ(x) is the density of the ammonia spirit. The
molar fraction of ammonia x is calculated in the following way:

x = 
Na

Na + Nw
 ,

the molar fraction of ammonia in the gas flow is determined analogously.
Since a drop moves uniformly with a velocity u equal to the velocity of the gas flow, the distance z travelled

by the drop in the flow from the moment it enters the reactor (see Fig. 1) is used as the marching variable in our
mathematical model. In the case where dz = udt, the equation defining the change in the molar fraction of ammonia
in a drop moving in the reactor takes the form

dx

dz
 = 

1

N
 



(1 − x) 

dNa

dz
 − x 

dNw

dz




 , (2)

where the number of molecules in the drop is determined as N = Na + Nw. In the free-molecular evaporation regime,
the change in the number of ammonia molecules in a drop is determined from the expression [3]

dNa

dz
 = 

4πRd
2

u√2πmak
 




pa,v (Tm)
√Tm

 − 
pa,s (Td)
√Td




 , (3)

where pa,v is the partial pressure of ammonia in the gas phase, pa,s is the equilibrium pressure of the ammonia above
the ammonia spirit, Tm and Td are the temperatures of the gas mixture and the drop, and k is the Boltzmann constant.

The change in the number of water molecules in the drop Nw is determined from the equation

dNw

dz
 = 

4πRd
2

u√2πmwk
 




pw,v (Tm)
√Tm

 − 
pw,s (Td)
√Td




 . (4)

Here, pw,v is the partial pressure of water in the gas phase and pw,s is the saturation pressure of the water above the
solution. Since Nw D R3 at a constant molar fraction of ammonia, the left side of Eq. (4) is inversely related to the
radius of a drop, i.e., the smaller the radius of the drop, the more intensive its mass exchange with the gas flow.

Below are two equations defining the changes in the numerical densities of molecules (of two types) in the
gas flow (the rates of these processes are dependent on the total area of the interface of the drops, i.e., on the product
of the number of monodisperse drops in a unit volume Nd and the area of the surface of a drop):

for the numerical density of the ammonia in the gas phase:

Fig. 1. Simplified scheme of a low-pressure aerosol reactor: 1) body of the
aerosol reactor; 2) ammonia drops in water; 3) connecting tube.

257



dNa,g

dz
 = − Nd 

4πRd
2

u√2πkma
 




pa,v (Tm)
√Tm

 − 
pa,s (Td)
√Td




 ; (5)

for the numerical density of the water vapor in the gas phase:

dNw,g

dz
 = − Nd 

4πRd
2

u√2πkmw
 




pw,v (Tm)
√Tm

 − 
pw,s (Td)
√Td




 . (6)

It is seen that the rate of change in the left sides of Eqs. (5) and (6) is directly proportional to the multiplier
NdRd

2 ⁄ u and, therefore, is conveniently represented in the following form:

dNw,g

dz
 D 

Qw

QcRdu
 
ρc

ρ (x)
 ,

where Qw and Qc are the mass rates of the water and gas flows through a unit area of the reactor cross section. In
the case where the ratio between these flow rates remains unchanged, the mass exchange between the drops and the
gas flow in the reactor intensifies with decrease in the radius of the drops.

The enthalpy of a binary drop E(Td, x, N) is represented in the approximation

E (Td, x, N) = [maNa + mwNw] c (x) Td − Ua (x) Na − Uw (x) Nw ,

where Ua and Uw are the amounts of latent heat released by an ammonia molecule and a water molecule as a result
of their phase transformation respectively. These amounts of heat depend on the molar fraction of ammonia. The en-
thalpy of a binary drop changes under the action of the gas-carrier, the water-vapor, and the ammonia-gas flows re-
sponsible for the energy transfer to a drop and from it. Representing these flows in the free-molecular approximation
[3], we obtain the equation for the change in the temperature of the drop:

dTd (x)
dz

 = − 
1

c (x)
 













− Udis 
dx

dz
 + 

3 [N
.

a (mac (x) Td + Ua) + N
.

w (mwc (x) Td + Uw)]

4πRd
3ρ (x)

 −

− 
3

Rdρ (x) u
 A













 , (7)

where the expression for A has the form A = Ag + Aa + Aw. The energy fluxes for all the three components of the gas
mixture can be represented, in turn, in the following form:

for the gas carrier:

Ag = 
pg (Tm)
√2πkmg

 




cgTm + 0.5kTm

√Tm
 − 

cgTd + 0.5kTd

√Td




 ;

for ammonia:

Aa = + 
1

√2πkma
 




pa,v (Tm) Tm

√Tm
 (ca + 0.5k) − 

pa,s (Td) Td

√Td
 (ca + 0.5k)




 ;

for water vapor:

Aw = + 
1

√2πkmw
 




pw,v (Tm) Tm

√Tm
 (cw + 0.5k) − 

pw,s (Td) Td

√Td
 (cw + 0.5k)




 .
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As follows from Eq. (7), the larger the radius of a drop, the smaller the influence exerted on its temperature by the
energy transferred form the gas phase. Recall that the sum of the partial pressures in the reactor is assumed to be con-
stant and is maintained with the use of a vacuum pump and a pressure transducer (Fig. 1) [1, 2, 7].

The heat of dissolution of an ammonia molecule in water Udis is equal to

 Udis = − Td 
dc (x)

dx
 ,

c(x) is the heat capacity of the solution. In the calculations, the experimental value of the dissolution heat is used.
For determining the equilibrium partial pressure of the ammonia above its aqueous solution pa,s, Henry’s law

can be used [8, 9]: x = Hpa,s, where H is Henry’s constant dependent on the temperature. For ammonia spirits, the
values of H were experimentally determined in [8]. With the use of our mathematical model, we solve, in fact, the
inverse problem: the value of pa,s is determined by the known molar fraction of ammonia in a drop and its tempera-
ture. Thus, if the right side of Eq. (3) is larger than zero, the drop absorbs ammonia from the gas phase. As follows
from the above-presented equations, we do not take into account the heat exchange between the walls of the reactor
and the environment, because, first of all, it is assumed that the reactor walls are heat-insulating and the difference be-
tween the temperatures of the gas flow and the environment is fairly small.

Preparatory to the numerical calculations with the use of the model developed, we will perform qualitative es-
timates. For simplicity, a one-component water drop and a gas mixture consisting of water vapor and a gas carrier will
be considered; the partial pressure of the water vapor will be assumed to be equal to pw. Then, on the assumption that
the flows of evaporating and condensing water molecules are equal, from (4) we obtain the equation for determining
the minimum temperature of the pure-water drops Tmin, attained in the process of evaporative cooling:

ps (Tmin)
pw

 = √Tmin

T0
 . 

According to this formula, at a total pressure of 20 Torr in the reactor, an initial temperature of the solution of 300 K,
and an initial pressure of 760 Torr, the partial pressure of the water vapor is determined as

pw = pw,s (300) 20
760

 . 

In this case, the minimum temperature of a drop Tmin C 276 K. In the case of evaporative cooling of a binary drop,
the situation does not change radically, even though the formula becomes much more complex. As the numerical re-
sults presented in the figures below show, the value of Tmin is not attained.

The experience on the study of the evaporative cooling of drops in a gas flow [10] suggests that a very im-
portant parameter is the ratio between the specific mass rates of the water and gas flows Qw

 ⁄ Qc. Moreover, in the
evaporative cooling of binary drops, of importance is the composition of the drops and of the gas flow. In our case,
of importance are the initial molar fractions of the ammonia in the drops and in the gas flow. The application of the
dimensional theory [11] to our problem (the initial temperature and radius of the drops and the total pressure in the
reactor are also considered as important parameters) gives the following results: for the radius of a drop found in the
stationary state with the vapor-gas medium Rst, we obtain the relation

Rst = R0F1 



x, xg, 

Qw

Qc




 ,

where R0 is the initial radius of a drop and F1 is a dimensionless function of the dimensionless arguments that, in
turn, are similarity parameters of the problem on the evaporative cooling. The finite stationary temperature of a drop
Tst is equal to

259



Tst = T0F2 



x, xg, 

Qw

Qc




 .

It is notable that the total pressure in an aerosol reactor does not appear in the expressions for the finite radius and
temperature of the drops since it mainly determines the dynamics of the evaporative cooling. The numerical results
presented below support the conclusions of our qualitative analysis.

Results of Calculations. The system of equations (1)–(7) was solved numerically by the fourth-order Runge–
Kutta method in the Mathcad-2000 medium. An important feature of our calculations is that the initial number of
molecules in the water and the initial amount of ammonia in a drop and not the initial radius of the drop were pre-
scribed. It is anticipated that the change to these variables will be useful in the theoretical investigation of the process
of evaporation-condensation of multicomponent drops. The pressure of the saturated water vapor above an ammonia
spirit was taken from the literature [12 and references there in].

Figure 2a shows the change in the temperature of approximately equal drops at different molar concentrations
of ammonia in a drop and in a gas mixture. In this case, the total pressure in the reactor remained unchanged and
equal to p = 60 Torr, and the initial temperature of the drops was 300 K. Of interest is first of all the high rate of
cooling, equal to D2⋅105 K ⁄ sec, which is mush higher that the rate of evaporation of micron drops of a pure water
[2]. Evidently, the reason for this is the larger values of the latent heat of the phase transition and the dissolution heat.
The behavior of curve 2 shows that, after the initial stage of rapid evaporation of water molecules, the processes of
absorption of ammonia drops from the gas phase become dominant. As a result of the liberation of the phase-transition
latent heat and the dissolution heat, a micron drop begins to heat. This process will continue as long as the molar
fractions of ammonia in the gas phase and in the drop are approximately equal (with regard for the difference between
their temperatures). In this case, the rate of cooling of such a drop is lower by approximately an order of magnitude
than in the cases represented by curves 1 and 3.

Figure 2b shows the change in the radius of the drop in the process of their evaporative cooling. It is seen
that several variants are possible. If the molar fraction of ammonia in the gas phase is larger than that in a drop, the
radius of the drop increases by several percent as a result of the evaporation of water molecules and the absorption of
large ammonia molecules (curve 2). For curve 3 representing the case where the rate of cooling is largest, the radius
of the drops changes by approximately 2%. It should be noted that this process differs substantially from the evapora-
tion of pure-water drops in the aerosol reactor [2]. The change in the radius of a drop is largest in the case where
water and ammonia evaporate simultaneously.

As our calculations have shown, the drops reach a stationary finite temperature as a result of the intensive
mass exchange with the gas flow shortly after they enter the flow reactor. Figure 3a shows the dependence of the fi-
nite temperature of the drops on the total pressure in the aerosol reactor for different ratios between the mass rates of
the water and gas flows Qw

 ⁄ Qc. The initial temperature of the drops was equal to 300 K. It is seen that, when the
total pressure in the reactor increases, the finite temperature of the drops somewhat increases. The ratio between the

Fig. 2. Dependence of the temperature (a) and radius (b) of a drop on the dis-
tance travelled by it in the reactor: 1) x = 0.33, xg = 0.05; 2) 0.05 and 0.26;
3) 0.05 and 0.05. Qw

 ⁄ Qc = 0.38, p = 60 Torr. Td, K; Rd, z, µm.
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mass rates of the water mixture and the gas flows influences the change in the finite temperature of the drops to a
lesser extent than the change in the total pressure. The finite temperature of the drops reaches a minimum value at a
minimum value of the parameter Qw

 ⁄ Qc on condition that the initial molar fractions of ammonia in the drops and in
the gas phase are fairly close in value.

Figure 4a shows the influence of the initial molar fraction of ammonia in the gas flow on the evaporative
cooling of the drops. It should be noted that the initial radius of a drop influences this process: the smaller the radius
of a drop, the lower its temperature. For all the cases being considered, the initial molar fraction of ammonia in a
drop was 0.05; the calculation was carried out for the case where the pressure in the aerosol reactor is constant and
equal to 40 Torr and the ratio between the mass rates of the water and gas flows Qw

 ⁄ Qc = 0.1.
The mathematical model proposed also allows one to calculate the changes in the parameters of the gas phase

in the reactor arising as a result of the evaporation of drops. Recall that the total pressure in the reactor is kept at a
constant level with the use of a vacuum pump and a control system. Figure 3b shows the dependence of the finite
temperature of the gas mixture in the reactor on the total pressure. The results are presented for Rd = 1.968 µm; the
initial concentration of ammonia in a drop and in the gas mixture remains unchanged and equal to 0.05. It is seen
from the graph that, at a small ratio between the mass rates of the water and gas flows Qw

 ⁄ Qc = 0.011, the tempera-
ture of the mixture remains practically unchanged. It is apparent that this property will be retained with further de-
crease in the ratio between the flow rates. However, the temperature of the gas mixture decreases with increase in the
ratio between the flow rates to Qw

 ⁄ Qc = 0.1. In this case, the cooling of the drops is strongest at small values of
Qw

 ⁄ Qc. Thus the value of Qw
 ⁄ Qc should be small for the pyrolysis of drops and large, at a fairly small pressure in

a reactor, for ecologically clean air conditioning systems.

Fig. 3. Dependence of the finite temperature of a drop (a) and the gas mixture
(b) on the pressure: Qw

 ⁄ Qc = 0.38 (1), 0.1 (2), and 0.011 (3); R0 = 1.96 µm,
x = xg = 0.05. T, K; p, Torr.

Fig. 4. Dependence of the finite temperature of a drop (a) and the gas mix-
ture (b) on the molar fraction of ammonia in the gas mixture: Rd = 2 (1),
3 (2), 4 (3), and 6 µm (4). T, K.
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Figure 4 b shows the dependence of the finite temperature of the gas mixture on the initial molar fraction of
ammonia in the gas flow. For all the cases, the initial molar fraction of ammonia in a drop is equal to 0.05.

The calculation data are in complete agreement with the above-presented analysis. It follows from these data
that the finite temperature of the gas mixture depends weakly on the radius of the drops, as differentiated from the
ratio between the mass rates of the two phases in the aerosol reactor and their initial temperatures.

Conclusions. A mathematical model of the evaporative cooling of a monodisperse ensemble of binary drops
[11] with a radius of several microns in a low-pressure flow aerosol reactor has been developed, and numerical calcu-
lations of this evaporation have been carried out. All the calculations of the heat-and-mass transfer processes were per-
formed in the free-molecular approximation. It was shown that the rate of cooling of binary drops can reach
D2⋅105 K ⁄ sec. The process of evaporative cooling intensifies significantly when the molar fraction of ammonia in the
drops is larger than the molar fraction of ammonia in the gas flow in the reactor.

In the reactor being considered, the cocurrent gas flow is cooled along with the drops. The degree of cooling
of the gas flow depends mainly on the ratio between the mass rates of the drop flow and the gas flow. The larger the
numerical density of the drops, the smaller the degree of evaporation of an individual drop required for it to reach the
stationary state. Our calculations have shown that the heat and mass transfer in the reactor intensifies with decrease in
the total pressure and the radius of the drops in it. An increase in the mass rate of the solution flow leads to a de-
crease in the intensity of the evaporative cooling of the drops. The present work is a continuation and a generalization
of [2] for binary solutions.

NOTATION

c(x), specific heat capacity of a liquid, J ⁄ (kg⋅K); c, heat capacity for one molecule, J ⁄ K; E(T, x, N), enthalpy
of a drop, J; F1 and F2, dimensionless functions of dimensionless arguments; H, Henry constant, Pa−1; k, Boltzmann
constant, J ⁄ K; m, mass of a molecule, kg; N, total number of molecules in a drop; Na and Nw, number of ammonia
and water molecules in a binary drop; Nd, number of monodisperse drops in a unit volume, m−3; pa,s and pw,s, satu-
ration pressure of the ammonia and water above the solution respectively, Pa; pa,v and pw,v, partial pressures of am-
monia and water in the gas medium respectively, Pa; pg, partial pressure of the gas carrier, Pa; Q, specific mass rate
of flow, kg ⁄ (m2⋅sec); Rd, radius of a drop, m; T, temperature, K; t, time, sec; u, velocity of travel of a drop, m ⁄ sec;
U, latent heat of the phase transition of one molecule, J; Udis, heat of dissolution of one ammonia molecule in water,
J; x, molar fraction of ammonia; z, distance travelled by a drop, m; ρ(x), density of an ammonia spirit, kg ⁄ m3; ρ, den-
sity, kg ⁄ m3. Subscripts: a, ammonia; c, gas flow; d, drop; dis, dissociation; g, gas-carrier; m, gas mixture; min, mini-
mum; st, stationary state; s, saturated; v, in the vapor phase, w, water.
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